Photoelastic and Electro-Optic Properties of Crystals

$159.00
+ $9.99 Shipping

Photoelastic and Electro-Optic Properties of Crystals

  • Brand: Unbranded

Photoelastic and Electro-Optic Properties of Crystals

  • Brand: Unbranded
Price: $159.00
Sold by:
$159.00
+ $9.99 Shipping

Taxes calculated at checkout

In stock

14-Day Returns Policy

Payment methods:

Description

Photoelastic and Electro-Optic Properties of Crystals

1. Photoelasticity of Crystals. Introduction. - 1. 1. Discovery of the Phenomenon of Photoelasticity. - 1. 2. Mathematical Formulation and Neumann's Constants. Pockels' Contribution. - 1. 3. A Brief Historical Survey. - 2. Mathematical Tools Tensor Properties of Crystals and Geometrical Crystallography. - 2. 1. Linear Transformations. - 2. 2. Matrix Algebra. - 2. 3. Vectors and Their Transformation Laws. - 2. 4. Tensor Nature of Physical Properties of Crystals and the Laws of Transformation of Cartesian Tensors. - 2. 5. Crystal Symmetry and Geometrical Crystallography. The 32 Point Groups. - 2. 6. Symmetry Operations and Their Transformation Matrices. - 2. 7. Symmetry Elements of the 32 Point Groups. - 2. 8. Neumann's Principle and Effect of Crystal Symmetry on Physical Properties. - 3. Pockels' Phenomenological Theory of Photoelasticity of Crystals. - 3. 1. Introduction. - 3. 2. Phenomenological Theory Stress-Optical and Strain-Optical Constants in Four- and Two-Suffix Notations; qij and pij Matrices for the 32 Crystallographic Point Groups. - 3. 3. Derivation of the Nonvanishing and Independent Photoelastic Constants for the Various Crystal Classes by Different Methods. - 4. Elasticity of Crystals. - 4. 1. Introduction. - 4. 2. Stress and Strain as Tensors. - 4. 3. Hooke's Law. - 4. 4. Experimental Methods of Determining cij and sij; Christoffel's Equation and Its Use in Determining cij of Crystals. - 4. 5. Ultrasonics. - 4. 6. Brillouin Effect and Crystal Elasticity. - 5. Experimental Methods of Determining the Photoelastic Constants. - 5. 1. Optical Behavior of a Solid under a Mechanical Stress and Neumann's Constants. - 5. 2. Derivation of Expressions for the Stress Birefringence in Terms of qij for Cubic and Noncubic Crystals. - 5. 3. Experimental Determination of qij and pij by OpticalMethods. - 5. 4. Dispersion of qij by Spectroscopic Methods. - 5. 5. Elliptic Vibrations and Elliptically Polarized Light. - 5. 6. Ultrasonic Methods of Studying the Elasto-Optic Behavior of Crystals. - 5. 7. Brillouin Scattering and Photoelasticity of Crystals. - 6. Atomistic Theory of Photoelasticity of Cubic Crystals. - 6. 1. Introduction. - 6. 2. Mueller's TheoryA Brief Survey. - 6. 3. Effect of Hydrostatic Pressure on the Index of Refraction n; The Strain Polarizability Constant ?0. - 6. 4. Anisotropy of Rj and ?itj. - 6. 5. Thermo-Optic Behavior of Crystals and Photoelastic behavior. - 6. 6. Pockels' Photoelastic Groups in Cubic Crystals and Mueller's Theory. - 6. 7. Photoelastic Dispersion in Cubic Crystals; ?0 as a Function of Crystalline Material Wavelength of Light and Temperature. - 6. 8. Effect of Elastic Deformation on the Oscillator Strengths and Dispersion Frequencies of Optical Electrons. - 6. 9. Temperature Dependence of Stress-Optical Dispersion. - 7. Piezoelectricity. - 7. 1. Introduction. - 7. 2. Direct and Converse Piezoelectric Effects. - 7. 3. Mathematical Formulation Piezoelectric Constants dijk in Tensor Notation and dij in Two-Suffix Notation; Relation between dijl and dij. - 7. 4. Deduction of the Surviving dijk for Some Crystal Classes by Tensor Method and the dij Matrices for the 21 Noncentrosymmetric Classes. - 7. 5. Concluding Remarks. - 8. Electro-Optic Effects in Crystals: Pockels Linear Electro-Optic and Kerr Quadratic Electro-Optic Effects. - 8. 1. Introduction. - 8. 2. Demonstration of the Electro-Optic Effects Linear and Quadratic. - 8. 3. Historical Survey. - 8. 4. Pockels' Phenomenological Theory of the Linear Electro-Optic Effect in Three- and Two-Suffix Notations Rijk and rij. - 8. 5. Derivation of the Relation between the Linear Electro-Optic Constants ofa Crystal: Free and Clamped Constants. - 8. 6. Kerr Quadratic Electro-Optic Effect: Pockels' Phenomenological Theory. - 8. 7. Crystal Symmetry and the Number of Surviving Linear Electro-Optic Coefficients Rijk and rij and Their Deduction by Tensor Method: rij Matrices for the 21 Noncentrosymmetric Classes. - 8. 8. Derivation of the Expressions for ? = f(rij) for Some Typical Crystal Classes and Orientations. - 8. 9. Experimental Methods of Determining rij. - 8. 10. Some Points of Interest on the Use of the Pockels Effect in Crystals and Half-Wave Voltage V?/2. - 8. 11. Some Technological Applications of Pockels Cells (Linear Electro-Optic Devices). - Author Index. Language: English
  • Brand: Unbranded
  • Category: Education
  • Artist: T. S. Narasimhamurty
  • Format: Paperback
  • Language: English
  • Publication Date: 2012/06/14
  • Publisher / Label: Springer
  • Number of Pages: 544
  • Fruugo ID: 450902125-950612960
  • ISBN: 9781475700275

Delivery & Returns

Dispatched within 4 days

  • STANDARD: $9.99 - Delivery between Thu 22 January 2026–Tue 27 January 2026

Shipping from United Kingdom.

We do our best to ensure that the products that you order are delivered to you in full and according to your specifications. However, should you receive an incomplete order, or items different from the ones you ordered, or there is some other reason why you are not satisfied with the order, you may return the order, or any products included in the order, and receive a full refund for the items. View full return policy